Abstract
This paper presents an axiomatic approach to finite Markov decision processes where the discount rate is zero. One of the principal difficulties in the no discounting case is that, even if attention is restricted to stationary policies, a strong overtaking optimal policy need not exists. We provide preference foundations for two criteria that do admit optimal policies: 0-discount optimality and average overtaking optimality. As a corollary of our results, we obtain conditions on a decision maker’s preferences which ensure that an optimal policy exists. These results have implications for disciplines where dynamic programming problems arise, including automatic control, dynamic games, and economic development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.