Abstract

We propose a new family of distance measures on rankings, derived through an axiomatic approach, that consider the nonuniform relevance of the top and bottom of ordered lists and similarities between candidates. The proposed distance functions include specialized weighted versions of the Kendall τ distance and the Cayley distance, and are suitable for comparing rankings in a number of applications, including information retrieval and rank aggregation. In addition to proposing the distance measures and providing the theoretical underpinnings for their applications, we also analyze algorithmic and computational aspects of weighted distance-based rank aggregation. We present an aggregation method based on approximating weighted distance measures by a generalized version of Spearman's footrule distance as well as a Markov chain method inspired by PageRank, where transition probabilities of the Markov chain reflect the chosen weighted distances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.