Abstract
In this paper, a micromechanically based constitutive model capturing anisotropic stress softening in reinforced elastomers under quasi-static loading is presented. A novel spatial distribution function of polymer chains taking into account its deformation induced anisotropic alignment is proposed. By this means, the anisotropic network averaging over the unit sphere can be evaluated analytically. The anisotropic alignment of polymer chains introduces non-affine deformation in the model. Furthermore, the anisotropic evolution of the Mullins effect and hysteresis are also derived analytically, so that no numerical integration is applied here. The model includes very few physically motivated material parameters and demonstrates good agreement with multi-dimensional experimental data as well as with molecular dynamics simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.