Abstract

Forward modeling is an important foundation of full-waveform inversion. The rotated optimal nine-point scheme is an efficient algorithm for frequency-domain 2D scalar wave equation simulation, but this scheme fails when directional sampling intervals are different. To overcome the restriction on directional sampling intervals of the rotated optimal nine-point scheme, I introduce a new finite-difference algorithm. Based on an average-derivative technique, this new algorithm uses a nine-point operator to approximate spatial derivatives and mass acceleration term. The coefficients can be determined by minimizing phase-velocity dispersion errors. The resulting nine-point optimal scheme applies to equal and unequal directional sampling intervals, and can be regarded a generalization of the rotated optimal nine-point scheme. Compared to the classical five-point scheme, the number of grid points per smallest wavelength is reduced from 13 to less than four by this new nine-point optimal scheme for equal and unequal directional sampling intervals. Three numerical examples are presented to demonstrate the theoretical analysis. The average-derivative algorithm is also extended to a 2D viscous scalar wave equation and a 3D scalar wave equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.