Abstract
An efficient auxiliary-differential equation (ADE) form of the complex frequency shifted perfectly matched layer (CPML) absorbing media derived from a stretched coordinate PML formulation is presented. It is shown that a unit step response of the ADE-CPML equations leads to a discrete form that is identical to Roden's convolutional PML method for FDTD implementations. The derivation of discrete difference operators for the ADE-CPML equations for FDTD is also presented. The ADE-CPML method is also extended in a compact form to a multiple-pole PML formulation. The advantage of the ADE-CPML method is that it provides a more flexible representation that can be extended to higher-order methods. In this paper, it is applied to the discontinuous Galerkin finite element time-domain (DGFETD) method. It is demonstrated that the ADE-CPML maintains the exponential convergence of the DGFETD method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.