Abstract
In this paper, we propose to add Grey prediction model GM(1,2) into the self-tuning Neuro-PID controller based on radial basis function (RBF) algorithm to improve the performance of the controller. Initially, the prediction of system output by the simple GM(1,2) model is added to the RBF algorithm as one of the inputs to enhance the performance of RBF neural network system identifier. The output of this GM(1,2)-RBF on-line learning system model is subsequently used to establish a set of updating algorithms for the gains of self-tuning PID controller. The detailed description of the proposed system structure and the design algorithm is given in this paper. The proposed auto-tuning PID controller via GM(1,2)-RBF algorithm is put into tests by Matlab simulations and motor speed control experiments by using Lab VIEW. The system responses of self-tuning PID controller based on GM(1,2)-RBF and RBF are compared. Both simulations and motor test results confirm that the proposed self-tuning PID controller based on GM(1,2)-RBF performs better than the one based on RBF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.