Abstract

Autonomous unmanned aerial vehicles (UAVs) are essential for detecting and tracking specific events, such as automatic navigation. The intelligent monitoring of people’s social distances in crowds is one of the most significant events caused by the coronavirus. The virus is spreading more quickly among the crowds, and the disease cycle continues in congested areas. Due to the error that occurs when humans monitor their activity, an automated model is required to alert to social distance violations in crowds. As a result, this article proposes a two-step framework based on autonomous UAV videos, including human tracking and deep learning-based recognition of the crowd’s social distance. The deep architecture is a modified-fast and lightweight ShuffleNet learning structure. First, the Kalman filter is used to determine the positions of individuals, and then the modified ShuffleNet is used to refine the bounding boxes obtained and determine the social distance. The social distance is calculated using the initial refinement of the bounding box obtained during the tracking step and the scale in frames of the human body. The observed average accuracy, average processing time (APT), and processed frame per second (FPS) for three congestion datasets were 97.5%, 84 milliseconds, and 11.5 FPS, respectively. Real-time decision-making was achieved by reducing the size and resolution of the frames. Additionally, the frames were re-labeled to reduce the computational complexity associated with detecting social distancing. The experimental results demonstrated that the proposed method could operate more quickly and accurately on various resolution frames of UAV videos with difficult conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.