Abstract

According to the second law of thermodynamics, the evolution of physical systems has a preferred direction, that is characterized by some positive entropy production. Here we propose a direct way to measure the stochastic entropy produced while driving a quantum open system out of thermal equilibrium. The driving work is provided by a quantum battery, the system and the battery forming an autonomous machine. We show that the battery’s energy fluctuations equal work fluctuations and check Jarzynski’s equality. As these energy fluctuations are measurable, the battery behaves as an embedded quantum work meter and the machine verifies a generalized fluctuation theorem involving the information encoded in the battery. Our proposal can be implemented with state-of-the-art opto-mechanical systems. It paves the way toward the experimental demonstration of fluctuation theorems in quantum open systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.