Abstract

The fundamental difference between autonomous robotic assembly and traditional hard automation, currently utilized in large-scale manufacturing production, lies in the specific approaches used in locating, acquiring, manipulating, aligning, and assembling parts. An autonomous robotic assembly manipulator offers high flexibility and high capability to deal with the inherent system uncertainties, unknowns, and exceptions. This paper presents an autonomous mobile manipulator that effectively overcomes inherent system uncertainties and exceptions by utilizing control strategies that employ coordinated control, combine visual and force servoing, and incorporate sophisticated reactive task control. The mobile manipulation system has been demonstrated experimentally to achieve high reliability for a "peg-in-hole" type of insertion assembly task that is commonly encountered in automotive wiring harness assembly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call