Abstract

Intrusion Detection System (IDS) is crucial to protect smartphones from imminent security breaches and ensure user privacy. Android is the most popular mobile Operating System (OS), holding above 85% market share. The traffic generated by smartphones is expected to exceed the one generated by personal computers by 2021. Consequently, this prevalent mobile OS will stay one of the most attractive targets for potential attacks on fifth generation mobile networks (5G). Although Android malware detection has received considerable attention, offered solutions mostly rely on performing resource intensive analysis on a server, assuming a continuous connection between the device and the server, or on employing supervised Machine Learning (ML) algorithms for profiling the malware’s behaviour, which essentially require a training dataset consisting of thousands of examples from both benign and malicious profiles. However, in practice, collecting malicious examples is tedious since it entails infecting the device and collecting thousands of samples in order to characterise the malware’s behaviour and the labelling has to be done manually. In this paper, we propose a novel Host-based IDS (HIDS) incorporating statistical and semi-supervised ML algorithms. The advantage of our proposed IDS is two folds. First, it is wholly autonomous and runs on the mobile device, without needing any connection to a server. Second, it requires only benign examples for tuning, with potentially a few malicious ones. The evaluation results show that the proposed IDS achieves a very promising accuracy of above 0.9983, reaching up to 1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.