Abstract

Wearable sweat analysis possesses significant potential for transforming personalized and precision medicine, by capturing the longitudinal profiles of a broad spectrum of biomarker molecules that are informative of our body’s dynamic chemistry. However, the lack of established physiological criteria to provide personalized feedback, based on sweat biomarker readings, has prevented the translation of wearable sweat-based bioanalytical technologies into health and wellness monitoring applications. Accordingly, scalable sweat sampling tools are required to facilitate large-scale and longitudinal clinical studies focusing on interpreting sweat biomarker readings. However, conventional sweat induction-collection tools are bulky and require multi-step and manual operations. Accordingly, here, we devise a sweat sampling patch, which can be deployed for autonomous diurnal sweat induction-collection. The core of this patch is an addressable array of miniaturized and coupled iontophoresis/microfluidic interfaces that can be activated on-demand or at scheduled time-points to induce/collect sufficient sweat samples for analysis. The iontophoresis interface was designed following an introduced design space centering on sufficient sweat secretory agonist delivery at safe current levels. The microfluidic interface was fabricated following a simple, rapid, and low-cost fabrication scheme. To achieve autonomous operation, these interfaces were extended into an array format and coupled with a custom-developed flexible and wireless circuit board. To inform utility, periodically induced/collected sweat samples of an individual were analyzed in relation to meal intake. [2020-0194]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.