Abstract

Monitoring water surface dynamics is essential for the management of lakes and reservoirs, especially those are intensively impacted by human exploitation and climatic variation. Although modern satellites have provided a superior solution over traditional methods in monitoring water surfaces, manually downloading and processing imagery associated with large study areas or long-time scales are time-consuming. The Google Earth Engine (GEE) platform provides a promising solution for this type of "big data" problems when it is combined with the automatic water extraction index (AWEI) to delineate multi-temporal water pixels from other forms of land use/land cover. The aim of this study is to assess the performance of a completely automatic water extraction framework by combining AWEI, GEE, and Landsat 8 OLI data over the period 2014-2018 in the case study of New Zealand. The overall accuracy (OA) of 0.85 proved the good performance of this combination. Therefore, the framework developed in this research can be used for lake and reservoir monitoring and assessment in the future. We also found that despite the temporal variability of climate duringthe period 2014-2018, the spatial areas of most of the lakes (3840) in the country remained the same at around 3742km2. Image fusion or aerial photos can be employed to check the areal variation of the lakes at a finer scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.