Abstract

Detection and real time monitoring of obstructive sleep apnea (OSA) episodes are very important tasks in healthcare. To suitably face them, this paper proposes an easy-to-use, cheap mobile-based approach relying on three steps. First, single-channel ECG data from a patient are collected by a wearable sensor and are recorded on a mobile device. Second, the automatic extraction of knowledge about that patient takes place offline, and a set of IF…THEN rules containing heart-rate variability (HRV) parameters is achieved. Third, these rules are used in our real-time mobile monitoring system: the same wearable sensor collects the single-channel ECG data and sends them to the same mobile device, which now processes those data online to compute HRV-related parameter values. If these values activate one of the rules found for that patient, an alarm is immediately produced. This approach has been tested on a literature database with 35 OSA patients. A comparison against five well-known classifiers has been carried out.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.