Abstract

© 2017 IEEE. In image classification, region detection is an effective approach to reducing the dimensionality of the image data but requires human intervention. Genetic Programming (GP) as an evolutionary computation technique can automatically identify important regions, and conduct feature extraction, feature construction and classification simultaneously. In this paper, an automatic region detection and processing approach in GP (GP-RDP) method is proposed for image classification. This approach is able to evolve important image operators to deal with detected regions for facilitating feature extraction and construction. To evaluate the performance of the proposed method, five recent GP methods and seven non-GP methods based on three types of image features are used for comparison on four image data sets. The results reveal that the proposed method can achieve comparable performance on easy data sets and significantly better performance on difficult data sets than the other comparable methods. To further demonstrate the interpretability and understandability of the proposed method, two evolved programs are analysed. The analysis shows the good interpretability of the GP-RDP method and proves that the GP-RDP method is able to identify prominent regions, evolve effective image operators to process these regions, extract and construct good features for efficient image classification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.