Abstract

Developing new methods to detect biomass information on freshwater fish in farm conditions enables the creation of decision bases for precision feeding. In this study, an approach based on Keypoints R-CNN is presented to identify species and measure length automatically using an underwater stereo vision system. To enhance the model’s robustness, stochastic enhancement is performed on image datasets. For further promotion of the features extraction capability of the backbone network, an attention module is integrated into the ResNeXt50 network. Concurrently, the feature pyramid network (FPN) is replaced by an improved path aggregation network (I-PANet) to achieve a greater fusion of effective feature maps. Compared to the original model, the mAP of the improved one in object and key point detection tasks increases by 4.55% and 2.38%, respectively, with a small increase in the number of model parameters. In addition, a new algorithm is introduced for matching the detection results of neural networks. On the foundation of the above contents, coordinates of head and tail points in stereo images as well as fish species can be obtained rapidly and accurately. A 3D reconstruction of the fish head and tail points is performed utilizing the calibration parameters and projection matrix of the stereo camera. The estimated length of the fish is acquired by calculating the Euclidean distance between two points. Finally, the precision of the proposed approach proved to be acceptable for five kinds of common freshwater fish. The accuracy of species identification exceeds 94%, and the relative errors of length measurement are less than 10%. In summary, this method can be utilized to help aquaculture farmers efficiently collect real-time information about fish length.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call