Abstract

Automatic modulation recognition (AMR) stands as a crucial core technology within the realm of signal processing and perception, playing a significant part in harsh electromagnetic environments. The time–frequency image (TFI) of communication signals can manifest modulation characteristics and serve as a foundation for signal modulation recognition and classification. However, under the influence of the electromagnetic environment, communication signals are exposed to varying degrees of interference, which poses a challenge to the recognition of modulation types. Taking into account the effects of interference and channel fading, this paper introduces a communication signal modulation recognition algorithm based on deep learning (DL) and time–frequency analysis. This approach employs short-time Fourier transform (STFT) to generate time–frequency diagrams from time-domain signals. Subsequently, it binarizes the image and feeds it as input data to the neural network. Our research presents a composite deep convolutional neural network (CNN) architecture known as the composite dense-residual neural network (CDRNN). This architecture focuses on enhancing the feature extraction and identification, aiming to achieve accurate recognition of modulation types in harsh electromagnetic environments. Finally, simulation results validate that the proposed deep learning algorithm holds remarkable advantages in boosting the accuracy of modulation type recognition with better adaptability. The algorithm shows better performance even in harsh electromagnetic environments. When the signal-to-noise ratio (SNR) is 18 dB, the recognition accuracy can reach 92.1%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.