Abstract

Camera traps often produce massive images, and empty images that do not contain animals are usually overwhelming. Deep learning is a machine‐learning algorithm and widely used to identify empty camera trap images automatically. Existing methods with high accuracy are based on millions of training samples (images) and require a lot of time and personnel costs to label the training samples manually. Reducing the number of training samples can save the cost of manually labeling images. However, the deep learning models based on a small dataset produce a large omission error of animal images that many animal images tend to be identified as empty images, which may lead to loss of the opportunities of discovering and observing species. Therefore, it is still a challenge to build the DCNN model with small errors on a small dataset. Using deep convolutional neural networks and a small‐size dataset, we proposed an ensemble learning approach based on conservative strategies to identify and remove empty images automatically. Furthermore, we proposed three automatic identifying schemes of empty images for users who accept different omission errors of animal images. Our experimental results showed that these three schemes automatically identified and removed 50.78%, 58.48%, and 77.51% of the empty images in the dataset when the omission errors were 0.70%, 1.13%, and 2.54%, respectively. The analysis showed that using our scheme to automatically identify empty images did not omit species information. It only slightly changed the frequency of species occurrence. When only a small dataset was available, our approach provided an alternative to users to automatically identify and remove empty images, which can significantly reduce the time and personnel costs required to manually remove empty images. The cost savings were comparable to the percentage of empty images removed by models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.