Abstract
In medical imaging, the automatic diagnosis of kidney carcinoma has become more difficult because it is not easy to detect by physicians. Pre-processing is the first identification method to enhance image quality, remove noise and unwanted components from the backdrop of the kidneys image. The pre-processing method is essential and significant for the proposed algorithm. The objective of this analysis is to recognize and classify kidney disturbances with an ultrasound scan by providing a number of substantial content description parameters. The ultrasound pictures are prepared to protect the interest pixels before extracting the feature. A series of quantitative features were synthesized of each images, the principal component analysis was conducted for minimizing the number of features to produce set of wavelet-based multi-scale features. Dragonfly algorithm (DFA) was executed in this method. In the proposed work, the design and training of a random decision forest classifier and selected features are implemented. The classification of e-health information using ideal characteristics is used by the RF classifier. The proposed technique is activated in MATLAB/simulink work site and the experimental results show that the peak accuracy of the proposed technique is 95.6% using GWO-FFBN techniques compared to other existing techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.