Abstract

This paper presents a novel framework for a fully automatic optimization of Quadratic Time-frequency Distributions (QTFDs). This ‘black box’ approach automatically adjusts the QTFD kernel parameters by using a hybrid genetic algorithm (HGA). This results in an optimal use of QTFDs suitable for non-specialist users without requiring any additional input except for the signal itself. This optimization problem has been formulated as the minimization of the cost function of a modified energy concentration measure. The efficiency of the proposed method has been demonstrated by representing selected non-stationary signals in the time-frequency domain and testing robustness under different SNR conditions by estimating the instantaneous frequency. A fast implementation of QTFD optimization reduces computation time significantly; e.g., the computation time of a real world bat signal of 400 samples reduces to 3.5885±0.3942s from its standard implementation (53.0910±1.445s).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.