Abstract

Abstract. The DI-flux, consisting of a fluxgate magnetometer coupled with a theodolite, is used for the absolute manual measurement of the magnetic field angles in most ground-based observatories worldwide. Commercial solutions for an automated DI-flux have recently been developed by the Royal Meteorological Institute of Belgium (RMI), and are practically restricted to the AutoDIF and its variant, the GyroDIF. In this article, we analyze the pros and cons of both instruments in terms of its suitability for installation at the partially manned geomagnetic observatory of Livingston Island (LIV), Antarctica. We conclude that the GyroDIF, even if it is less accurate and more power demanding, is more suitable than the AutoDIF for harsh conditions due to the simpler infrastructure that is necessary. Power constraints in the Spanish Antarctic Station Juan Carlos I (ASJI) during the unmanned season require an energy-efficient design of the thermally regulated box housing the instrument as well as thorough power management. Our experiences can benefit the geomagnetic community, which often faces similar challenges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.