Abstract

The pathological diagnosis and treatment of azoospermia depend on precise identification of spermatogenic cells. Traditional methods are time-consuming and highly subjective due to complexity of Johnsen score, posing challenges for accurately diagnosing azoospermia. Here, we introduce a novel SC-YOLO framework for automating the classification of spermatogenic cells that integrates S3Ghost module, CoordAtt module and DCNv2 module, effectively capturing texture and shape features of spermatogenic cells while reducing model parameters. Furthermore, we propose a simplified Johnsen score criteria to expedite the diagnostic process. Our SC-YOLO framework presents the higher efficiency and accuracy of deep learning technology in spermatogenic cell recognition. Future research endeavors will focus on optimizing the model's performance and exploring its potential for clinical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.