Abstract

An automatic approach for modeling acoustic responses of 3D bounded and unbounded domains is proposed based on the scaled boundary finite element method (SBFEM). The bounded acoustic near field is modeled by SBFEM. Due to the fact that SBFEM only requires boundary discretizations, the meshing process in this approach is automatically accomplished by introducing an octree-based meshing technique and boundary trimming. Therefore, models with very complex geometries can be analyzed automatically, i.e. no human input/intervention is needed/required. For modeling the unbounded acoustic far field, a spherical high-order doubly-asymptotic open boundary is developed for modeling scalar wave propagation in 3D unbounded domain. This doubly-asymptotic open boundary is able to represent the unbounded domain accurately and efficiently as it includes recursive continued-fraction expansions in both high and low frequency limits. The continued-fraction solutions are expressed in the time-domain by introducing auxiliary variables. The bounded and unbounded domains are coupled via the nodal fluxes on the near/far field interface. The final coupled ordinary differential equations can be solve using standard time-stepping methods directly for obtaining transient acoustic responses. Various numerical examples are presented in this paper for demonstrating the accuracy, efficiency and capability of this approach for analyzing acoustic problems with complex geometries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.