Abstract

Automatic clustering and dimension reduction are two of the most intriguing topics in the field of clustering. Affinity propagation (AP) is a representative graph-based clustering algorithm in unsupervised learning. However, extracting features from high-dimensional data and providing satisfactory clustering results is a serious challenge for the AP algorithm. Besides, the clustering performance of the AP algorithm is sensitive to preference. In this paper, an improved affinity propagation based on optimization of preference (APBOP) is proposed for automatic clustering on high-dimensional data. This method is optimized to solve the difficult problem of determining the preference of affinity propagation and the poor clustering effect for non-convex data distribution. First, t-distributed stochastic neighbor embedding is introduced to reduce the dimensionality of the original data to solve the redundancy problem caused by excessively high dimensionality. Second, an improved hybrid equilibrium optimizer based on the crisscross strategy (HEOC) is proposed to optimize preference selection. HEOC introduces the crisscross strategy to enhance local search and convergence efficiency. The benchmark function experiments indicate that the HEOC algorithm has better accuracy and convergence rate than other swarm intelligence algorithms. Simulation experiments on high-dimensional and real-world datasets show that APBOP has better effectiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.