Abstract
The prostate cancer is a deadly form of cancer that assassinates a significant number of men due of its mediocre identification process. Images from people with cancer include important and intricate details that are difficult for conventional diagnostic methods to extract. This work establishes a novel Automated Prostate-cancer Prediction System (APPS) model for the goal of detecting and classifying prostate cancer utilizing MRI imaging sequences. The supplied medical image is normalized using a Coherence Diffusion Filtering (CDFilter) approach for improved quality and contrast. The appropriate properties are also extracted from the normalized image using the morphological and texture feature extraction approach, which helps to increase the classifier's accuracy. In order to train the classifier, the most important properties are also selected utilizing the cutting-edge Dragon Fly Optimized Feature Selection (DFO-FS) algorithm. Using this method greatly improves the classifier's overall disease diagnosis performance in less time and with faster processing. More specifically, the provided MRI input data are used to categorize the prostate cancer-affected and healthy tissues using the new Convoluted Gated Axial Attention Learning Model (ConGA2L) based on the selected features. This study compares and validates the performance of the APPS model by looking at several aspects using publicly available prostate cancer data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Iraqi Journal For Computer Science and Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.