Abstract

Zebrafish are becoming increasingly popular in behavioral neuroscience as investigators have started to realize the benefits of sophisticated genetic tools specifically developed for this species along with the pharmacological tools already available for other laboratory model organisms. The zebrafish has been proposed as an in vivo tool for the analysis of vertebrate fear responses as well as human psychopathological conditions such as anxiety. We have been developing behavioral tasks for zebrafish that could be utilized for screening mutation or drug induced changes in fear responses. In this paper we present a modified version of a previously developed predator avoidance paradigm that now allows the induction and quantification of avoidance reactions that we previously could not elicit. Most importantly, in the current paradigm zebrafish are now shown to respond to the appearance of a moving image of a sympatric predator, the Indian leaf fish, by increasing their distance from the image, a robust reaction that is easy to quantify in an automated manner. Unexpectedly, however, another fear response, the “diving” response, was seen robustly only at the beginning of the test but not in response to the predator stimulus. We discuss the implications of these results and conclude that although zebrafish fear responses are complex and context dependent, the current paradigm is a significant step towards high throughput screening for alterations in fear responses of zebrafish.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call