Abstract

Triboelectric nanogenerators (TENGs) have high potential in self-powered sensing and energy harvesting applications. In general, TENGs’ internal source resistance is high, and their output power varies under different load resistance values. Therefore, a resistance box is required to evaluate their energy harvesting performance and obtain the power curve under different load values. The load tuning process is usually performed by hand. This repetitive process is time-consuming and error-prone. Consequently, an Automated Power Evaluation Workbench (APEW) is developed, making the resistance switching and power measuring process program-controlled. The resistance value is resolved using the Octal decomposition principle. In addition, a resistance synthesis algorithm is proposed to alter the resistance value with a minimum step of 1 Ohm. The target resistance value is physically synthesized by relay switching, while digital lines control the relays. The proposed APEW is then evaluated experimentally, and the obtained results are compared with those of the traditional manual switching approach. It is deduced that the two power curves are almost identical. Therefore, it is believed that the proposed APEW will play a crucial role in TENG’s further development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.