Abstract

Additive manufacturing enables the realization of complex component designs that cannot be achieved with conventional processes, such as the integration of cellular structures, such as lattice structures, for weight reduction. To include lattice structures in component designs, an automated algorithm compatible with conventional CAD that is able to handle various lattice topologies as well as variable local shape parameters such as strut radii is required. Smooth node transitions are desired due to their advantages in terms of reduced stress concentrations and improved fatigue performance. The surface patch-based algorithm developed in this work is able to solidify given lattice frames to smooth lattice structures without manual construction steps. The algorithm requires only a few seconds of sketching time for each node and favours parallelisation. Automated special-case workarounds as well as fallback mechanisms are considered for non-standard inputs. The algorithm is demonstrated on irregular lattice topologies and applied for the construction of a lattice infill of an aircraft component that was additively manufactured.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.