Abstract

AbstractAn automated method for the calculation of P–T paths based on garnet zoning is presented and used to interpret zoning in metapelitic schist from the southern Canadian Cordillera. The approach adopted to reconstruct the P–T path is to match garnet compositions along a radial transect with predictions from thermodynamic forward models, while iteratively modifying the composition to account for fractional crystallization. The method is applied to a representative sample of garnet‐ and staurolite‐bearing schist from an amphibolite facies Barrovian belt in the southern Canadian Omineca belt. Garnet zoning in these schists is concentric and largely continuous from core to rim. Three zones are present, the first two of which coincide with sector‐zoned cores of garnet crystals. Similar zoning is developed in rocks that contain or lack staurolite, respectively, suggesting garnet growth was restricted to the initial part of the prograde P–T path prior to the development of staurolite. Growth zoning in large garnet crystals has not been significantly modified by diffusion. This interpretation is based on zoning characteristics of garnet crystals and is further supported by results of a forward model incorporating the effects of simultaneous fractional crystallization and intracrystalline diffusion. The P–T path calculated for this rock includes an initial, linear stage with a high dP/dT, and a later stage dominated by heating. The approach adopted in this study may have application to other garnet‐bearing rocks in which growth zoning is preserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.