Abstract

Elastic pressure/volume (PV) curves of the respiratory system have attracted increasing interest, because they may be helpful to optimize ventilator settings in patients undergoing mechanical ventilation. Clinically applicable methods need to be fast, use routinely available equipment, draw the inspiratory and expiratory PV curve limbs, separate the resistive and viscoelastic properties of the respiratory system from the elastic properties, and provide reproducible measurements. This paper presents a computer-controlled method for rapid measurements of static PV curves using a long inflation–deflation with pauses, and its evaluation in six pigs before and after lung damage caused by oleic acid. The method is fast, i.e. 20.5 ± 1.9 s (mean ± SD) in healthy lungs and 17.7 ± 4.1 s in diseased lungs, this including inspiratory and expiratory pauses of 1.1 s duration. In addition the only equipment used was a clinical ventilator and a PC. For healthy and damaged lungs expiratory PV curve limbs were very reproducible and were at higher volume than the inspiratory limbs, indicating hysteresis. For damaged lungs inspiratory PV limbs were reproducible. For healthy lungs the inspiratory limbs were reproducible but only after the first inflation–deflation. It is possible that during the first inflation alveoli are recruited which are not derecruited on deflation, shifting the inspiratory limb of the PV curve. The paused long inflation–deflation technique provides a quick, automated measurement of static PV curves on both inspiratory and expiratory limbs using routinely available equipment in the intensive care unit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.