Abstract
Abstract Due to their exceptional host-guest properties, Metal-Organic Frameworks (MOFs) are promising materials for storage of various gases with environmental and technological interest. Molecular modeling and simulations are invaluable tools, extensively used over the last two decades for the study of various properties of MOFs. In particular, Monte Carlo simulation techniques have been employed for the study of the gas uptake capacity of several MOFs at a wide range of different thermodynamic conditions. Despite the accurate predictions of molecular simulations, the accurate characterization and the high-throughput screening of the enormous number of MOFs that can be potentially synthesized by combining various structural building blocks is beyond present computer capabilities. In this work, we propose and demonstrate the use of an alternative approach, namely one based on an Automated Machine Learning (AutoML) architecture that is capable of training machine learning and statistical predictive models for MOFs’ chemical properties and estimate their predictive performance with confidence intervals. The architecture tries numerous combinations of different machine learning (ML) algorithms, tunes their hyper-parameters, and conservatively estimates performance of the final model. We demonstrate that it correctly estimates performance even with few samples ( https://app.jadbio.com/share/86477fd7-d467-464d-ac41-fcbb0475444b .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.