Abstract
Based on Kleinert's variational perturbation (KP) theory [Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 3rd ed. (World Scientific, Singapore, 2004)], we present an analytic path-integral approach for computing the effective centroid potential. The approach enables the KP theory to be applied to any realistic systems beyond the first-order perturbation (i.e., the original Feynman-Kleinert [Phys. Rev. A 34, 5080 (1986)] variational method). Accurate values are obtained for several systems in which exact quantum results are known. Furthermore, the computed kinetic isotope effects for a series of proton transfer reactions, in which the potential energy surfaces are evaluated by density-functional theory, are in good accordance with experiments. We hope that our method could be used by non-path-integral experts or experimentalists as a "black box" for any given system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.