Abstract
Bark microrelief is of importance to the physiological ecology of forested ecosystems because it has been documented to influence the distribution of corticolous lichens, stemflow generation, and forest biogeochemical cycles. Hitherto no instrument existed to characterize the inherent variability of bark microrelief with high spatial resolution. Our newly designed prototype instrument consists of a hinged ring, laser rangefinder, and motor linked to a standard laptop. The prototype produces trunk cross sections at a 0.33 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">°</sup> horizontal resolution and detects bark-ridge-to-furrow heights at < 1 resolution. The prototype was validated by comparing measurements of bark microrelief between the instrument and digital calipers. The mean absolute error of the prototype as a percentage of the measured average microrelief was 1.0%, with a mean absolute error of 0.83 mm. Our bark microrelief prototype instrument can supply critical requisite information of bark microstructure that can be used by researchers to interpret the distribution of lichens and bryophytes on tree surfaces, relate stemflow yield and chemistry to bark microrelief, and provide detailed measurements of the changes of bark microrelief with stem dehydration. In short, the prototype instrument can be used to gain a more holistic understanding of the physiological ecology of forest ecosystems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Instrumentation and Measurement
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.