Abstract

Electrochemical paper-based analytical devices (ePADs) are useful analytical devices that serve as point-of-care testing (POCT) devices for various clinical biomarkers in view of their simplicity, portability, and low-cost format. However, multistep reagent manipulation usually restricts the performance of the device for end users. Herein, we developed a sequential ePAD for sequential immunosensing fluid delivery by integrating dual flow behaviors (fast-flow/delayed) within a single paper platform for the simultaneous detection of hepatitis B surface antigen (HBsAg) and hepatitis C core antigen (HCVcAg). In the present work, a fast-flow channel was used for the automated washing of unbound antigens, while a delayed channel was created to store a redox reagent for further electrochemical analysis with a single buffer loading (the analysis time can be completed within 500 s). Hence, the undesirable complex procedure of multi-step reagent manipulation is scarcely needed by the user. The detection limit of the proposed ePAD was as low as 18.2 pg mL−1 for HBsAg and 1.19 pg mL−1 for HCVcAg. In addition, this proposed ePAD was also proven to be effective in real clinical sera from patients to verify its biological applicability. The ePAD sensor shows high promise as an easy-to-use, portable, and extendable sensor for other multiplex biological assays.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call