Abstract
An ensemble consists of multiple learners and can achieve a better generalisation performance than a single learner. Genetic programming (GP) has been applied to construct ensembles using different strategies such as bagging and boosting. However, no GP-based ensemble methods focus on dealing with image classification, which is a challenging task in computer vision and machine learning. This paper proposes an automated ensemble learning framework using GP (EGP) for image classification. The new method integrates feature learning, classification function selection, classifier training, and combination into a single program tree. To achieve this, a novel program structure, a new function set and a new terminal set are developed in EGP. The performance of EGP is examined on nine different image classification data sets of varying difficulty and compared with a large number of commonly used methods including recently published methods. The results demonstrate that EGP achieves better performance than most competitive methods. Further analysis reveals that EGP evolves good ensembles simultaneously balancing diversity and accuracy. To the best of our knowledge, this study is the first work using GP to automatically generate ensembles for image classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.