Abstract
Highway bottlenecks are responsible for the majority of traffic congestion. Although the problem of bottleneck detection is not new, contemporary methods have not solved the problem thoroughly with regards to bottleneck locations, activation time, and related congestion tracking. These elements are essential for identifying and characterizing a bottleneck. This paper proposes a comprehensive framework for detecting and extracting these features of highway bottlenecks from traffic data. We particularly focus on questions (i) whether a bottleneck is the primary source of congestion or (ii) whether it is activated due to congestion caused by another downstream bottleneck. The underlying principles of the proposed method include the detection of congestion (in spatio-temporal patterns of traffic congestion), and the detection of speed discontinuities in traffic data (since this is an important indicator of a bottleneck activation). The method is data-driven and automatic therefore can be easily applied to different highways and used to obtain meaningful statistics of existing bottlenecks. We have tested the method on simulated data and also demonstrated it on real data from a busy highway section in the Netherlands. The results suggest that the method is robust to different implementations, i.e. locations, of loop-detectors which measure traffic at discrete locations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.