Abstract

In BCI (Brain-Computer Interface) research community, most BCI research is focused on bioelectrical brain signals recorded by EEG (electroencephalography) as it's noninvasive and thus readily available. While the EEG signal processing methods in EEG based BCI are appealing, they face substantial practical problems. Due to the limitation of EEG signal recording technology, physiological artifacts, especially those generated by eye (EOG, electrooculography), interfere with EEG, may change the characteristics of the neurological phenomena in EEG, and make those signal processing performs incompetently. Linear combination and regression is the most common used technique for removing ocular artifacts from EEG signals where a fraction of the EOG signal is subtracted from the EEG. One problem is that subtracting the EOG signal may also remove part of the EEG signal, for the EOG signal to be subtracted is also contaminated with the EEG signal. In this paper, a new EOG correction model is introduced for EOG artifacts, where the EEG contained in the EOG is considered, and thus avoid removing part of the EEG signal by subtracting the EOG signal. In order to apply this new model in online BCI signal processing, this paper adopts the AR (autoregressive) filtering model of the EEG activity to detect the EOG artifacts, only if it exists, the EEG correction method are performed. We test our methods in the BCI competition 2008 dataset IIa, our informal results indicate that EOG artifacts are well detected, and EOG is well removed from motor imagination related EEG signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.