Abstract
Abstract. Obtaining an accurate cloud-cover state is a challenging task. In the past, traditional two-dimensional red-to-blue band methods have been widely used for cloud detection in total-sky images. By analyzing the imaging principle of cameras, the green channel has been selected to replace the 2-D red-to-blue band for detecting cloud pixels from partly cloudy total-sky images in this study. The brightness distribution in a total-sky image is usually nonuniform, because of forward scattering and Mie scattering of aerosols, which results in increased detection errors in the circumsolar and near-horizon regions. This paper proposes an automatic cloud detection algorithm, "green channel background subtraction adaptive threshold" (GBSAT), which incorporates channel selection, background simulation, computation of solar mask and cloud mask, subtraction, an adaptive threshold, and binarization. Five experimental cases show that the GBSAT algorithm produces more accurate retrieval results for all these test total-sky images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.