Abstract
In this study, an attempt has been made to differentiate HEp-2 cellular shapes using Bag-of-keypoint features and optimization. For this, the images are considered from a publicly available database. To increase the cell structure visibility, the images are pre-processed using edge-sensitive local contrast enhancement. Further, the Speeded-up Robust Feature (SURF) keypoints are extracted and Bag-of-keypoints for each shape are generated. These features are subjected to Ant Colony Optimization (ACO) algorithm for feature selection. The optimal features obtained are then fed to Support Vector Machine (SVM) and k-Nearest Neighbour (kNN) classifiers. Results show that the ACO algorithm can identify the optimal features that characterize the cellular shapes. SVM and kNN are able to differentiate between the shapes with an average classification accuracy of 93.6% and 94.8% respectively. Since differential diagnosis of HEp-2 cellular shapes is significant in the disease-specific prognosis and treatment, this study seems to be clinically relevant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.