Abstract

Developments of automated systems for brain metastasis (BM) detection and segmentation from MRI for assisting early detection and stereotactic radiosurgery (SRS) have been reported but most based upon relatively small datasets from single institutes. This work aims to develop and evaluate a system using a large multi-institutional dataset, and to improve both identification of small/subtle BMs and segmentation accuracy of large BMs. A 3D U-Net system was trained and evaluated to detect and segment intraparenchymal BMs with a size > 2mm using 1856 MRI volumes from 1791 patients treated with SRS from seven institutions (1539 volumes for training, 183 for validation, and 134 for testing). All patients had 3D post-Gd T1w MRI scans pre-SRS. Gross tumor volumes (GTVs) of BMs for SRS were curated by each institute first. Then, additional efforts were spent to create GTVs for the untreated and/or uncontoured BMs, including central reviews by two radiologists, to improve accuracy of ground truth. The training dataset was augmented with synthetic BMs of 3773 MRIs using a 3D generative pipeline. Our system consists of two U-Nets with one using small 3D patches dedicated for detecting small BMs and another using large 3D patches for segmenting large BMs, and a random-forest based fusion module for combining the two network outputs. The first U-Net was trained with 3D patches containing at least one BM < 0.1 cm3. For detection performance, we measured BM-level sensitivity and case-level false-positive (FP) rate. For segmentation performance, we measured BM-level Dice similarity coefficient (DSC) and 95-percentile Hausdorff distance (HD95). We also stratified performances based upon BM sizes. For 739 BMs in the 134 testing cases, the overall lesion-level sensitivity was 0.870 with an average case-level FP of 1.34±1.92 (95% CI: 1.02-1.67). The sensitivity was >0.969 for the BMs >0.1 cm3, but dropped to 0.755 for the BMs < 0.1 cm3 (Table 1). The average DSC and HD95 for all detected BMs were 0.786 and 1.35mm. The worse performance for BMs > 20 cm3 was caused by a case with 83 cm3 GTV and artifacts in the MRI volume. We achieved excellent detection sensitivity and segmentation accuracy for BMs > 0.1 cm3, and promising performance for small BMs (<0.1cm3) with a controlled FP rate using a large multi-institutional dataset. Clinical utility for assisting early detection and SRS planning will be investigated. Table 1: Per-lesion detection and segmentation performance stratified by individual BM size. N is the number of BMs in each category.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call