Abstract

Forests contain a majority of the aboveground carbon (C) found in ecosystems, and understanding biomass lost from disturbance is essential to improve our C-cycle knowledge. Our study region in the Wisconsin and Minnesota Laurentian Forest had a strong decline in Normalized Difference Vegetation Index (NDVI) from 1982 to 2007, observed with the National Ocean and Atmospheric Administration’s (NOAA) series of Advanced Very High Resolution Radiometer (AVHRR). To understand the potential role of disturbances in the terrestrial C-cycle, we developed an algorithm to map forest disturbances from either harvest or insect outbreak for Landsat time-series stacks. We merged two image analysis approaches into one algorithm to monitor forest change that included: (1) multiple disturbance index thresholds to capture clear-cut harvest; and (2) a spectral trajectory-based image analysis with multiple confidence interval thresholds to map insect outbreak. We produced 20 maps and evaluated classification accuracy with air-photos and insect air-survey data to understand the performance of our algorithm. We achieved overall accuracies ranging from 65% to 75%, with an average accuracy of 72%. The producer’s and user’s accuracy ranged from a maximum of 32% to 70% for insect disturbance, 60% to 76% for insect mortality and 82% to 88% for harvested forest, which was the dominant disturbance agent. Forest disturbances accounted for 22% of total forested area (7349 km2). Our algorithm provides a basic approach to map disturbance history where large impacts to forest stands have occurred and highlights the limited spectral sensitivity of Landsat time-series to outbreaks of defoliating insects. We found that only harvest and insect mortality events can be mapped with adequate accuracy with a non-annual Landsat time-series. This limited our land cover understanding of NDVI decline drivers. We demonstrate that to capture more subtle disturbances with spectral trajectories, future observations must be temporally dense to distinguish between type and frequency in heterogeneous landscapes.

Highlights

  • Understanding forest carbon (C) dynamics at the management scale is critical, because forests contain ~90% of aboveground terrestrial C stocks [1]

  • We believe negative Normalized Difference Vegetation Index (NDVI) trends in the Laurentian Forest observed by 8-km Advanced Very High Resolution Radiometer (AVHRR) are partially due from increased rates of disturbance

  • Were the long-term declines in forest productivity an error or real? From our classification results we believe the long-term AVHRR NDVI declines in the Laurentian Forest are associated with disturbances from insect outbreaks that caused defoliation and mortality, with salvage logging occurring in a large portion of dead forest stands

Read more

Summary

Introduction

Understanding forest carbon (C) dynamics at the management scale is critical, because forests contain ~90% of aboveground terrestrial C stocks [1]. Prior studies have found North American forests to be a large C sink that offsets global anthropogenic C emissions [2,3,4]. Monitoring and understanding disturbance dynamics at the landscape scale that can alter forest C is important so that future management activities can optimize C sequestration [6,7]. We focused on the northern forests of Wisconsin and Minnesota (Laurentian Forest) that experienced a substantial decline in productivity from 1982 to 2007.

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call