Abstract

Selecting a map projection is key to minimizing distortion and thus clear communication of spatial data and accurate spatial analysis. Methods exist for selecting projections based on the intended area of use but not for finding polygons that can be used to clip geographic data to ensure the data are projected correctly and within desired distortion limits. The projection methods available in the Proj library were examined to determine the nature of the errors and distortions they created based on global data and a wide variety of available settings. Approaches were then identified for each projection including simple bounding boxes and more complex clipping polygons. To make sure that errors were not introduced into the projected data, data integrity polygons (DIPs) were created by placing a grid of cells over the Earth and then finding a cell near the origin that was within the specified criteria. Adjacent cells were added to the DIPs that met the criteria until no additional cells could be added. The criteria included projected cell sides could not intersect with themselves or other cells, the order of the cell corners could not be reversed, and distortion within the cell had to be within specified limits. I found that up to two DIPs with a limit on length distortion of a factor of 4 provided a general solution for all but three projection methods. Limitations included the time to find DIPs at high resolution. Clipping polygons and visualizations of the results were made available on a website.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call