Abstract

Bounded model-checking is a technique for finding bugs in very large designs. Bounded model-checking by itself is incomplete: it can find bugs, but it cannot prove that a system satisfies a specification. A dynamic completeness criterion can allow bounded model-checking to prove properties. A dynamic completeness criterion typically searches for a beginning of a bug or bad behavior; if no such beginning can be found, we can conclude that no bug exists, and bounded model-checking can terminate. Dynamic completeness criteria have been suggested for several temporal logics, but most are tied to a specific bounded model-checking encoding, and the ones that are not are based on nondeterministic Buchi automata. In this paper we develop a theoretic framework for dynamic completeness criteria based on alternating Buchi automata. Our criterion generalizes and explains several existing dynamic completeness criteria, and is suitable for both linear-time and universal branching-time logic. We show that using alternating automata rather than nondeterministic automata can lead to much smaller completeness thresholds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.