Abstract
We introduce generalized register automata (GRAs) and study their properties and applications in reasoning about systems and specifications over infinite domains. We show that GRAs can capture both VLTL – a logic that extends LTL with variables over infinite domains, and abstract systems – finite state systems whose atomic propositions are parameterized by variable over infinite domains. VLTL and abstract systems naturally model and specify infinite-state systems in which the source of infinity is the data domain (c.f., range of processes id, context of messages). Thus, GRAs suggest an automata-theoretic approach for reasoning about such systems. We demonstrate the usefulness of the approach by pushing forward the known border of decidability for the model-checking problem in this setting. From a theoretical point of view, GRAs extend register automata and are related to other formalisms for defining languages over infinite alphabets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.