Abstract

Airborne repeat-pass SAR systems are very sensible to subwavelength deviations from the reference track. To enable repeat-pass interferometry, a high-precision navigation system is needed. Due to the limit of accuracy of such systems, deviations in the order of centimeters remain between the real track and the processed one, causing mainly undesirable phase undulations and misregistration in the interferograms, referred to as residual motion errors. Up to now, only interferometric approaches, as multisquint, are used to compensate for such residual errors. In this paper, we present for the first time the use of the autofocus technique for residual motion errors in the repeat-pass interferometric context. A very robust autofocus technique has to be used to cope with the demands of the repeat-pass applications. We propose a new robust autofocus algorithm based on the weighted least squares phase estimation and the phase curvature autofocus (PCA) extended to the range-dependent case. We call this new algorithm weighted PCA. Different from multisquint, the autofocus approach has the advantage of being able to estimate motion deviations independently, leading to better focused data and correct impulse-response positioning. As a consequence, better coherence and interferometric-phase accuracy are achieved. Repeat-pass interferometry based only on image processing gains in robustness and reliability, since its performance does not deteriorate with time decorrelation and no assumptions need to be made on the interferometric phase. Repeat-pass data of the E-SAR system of the German Aerospace Center (DLR) are used to demonstrate the performance of the proposed approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call