Abstract

Peptide cyclization improves conformational rigidity, providing favorable pharmacological properties, such as proteolytic resistance, target specificity, and membrane permeability. Thus, many synthetic and biosynthetic peptide circularization strategies have been developed. PatG and related natural macrocyclases process diverse peptide sequences, generating millions of cyclic derivatives. However, the application of these cyclases is limited by low yields and the potential presence of unwanted intermediates. Here, we designed a covalently fused G macrocyclase with substrates that efficiently and spontaneously release cyclic peptides. To increase the fidelity of synthesis, we developed an orthogonal control mechanism enabling precision synthesis in Escherichia coli. As a result, a library comprising 4.8 million cyclic derivatives was constructed, producing an estimated 2.6 million distinct cyclic peptides with an improved yield and fidelity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call