Abstract

Jupiter's aurora is the most powerful in the Solar System. It is powered largely by energy extracted from planetary rotation, although there seems also to be a contribution from the solar wind. This contrasts with Earth's aurora, which is generated through the interaction of the solar wind with the magnetosphere. The major features of Jupiter's aurora (based on far-ultraviolet, near-infrared and visible-wavelength observations) include a main oval that generally corotates with the planet and a region of patchy, diffuse emission inside the oval on Jupiter's dusk side. Here we report the discovery of a rapidly evolving, very bright and localized emission poleward of the northern main oval, in a region connected magnetically to Jupiter's outer magnetosphere. The intensity of the emission increased by a factor of 30 within 70 s, and then decreased on a similar timescale, all captured during a single four-minute exposure. This type of flaring emission has not previously been reported for Jupiter (similar, but smaller, transient events have been observed at Earth), and it may be related directly to changes in the solar wind.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.