Abstract

Model uncertainties and external disturbances present significant challenges for controlling fixed-wing unmanned aerial vehicles (UAVs). An adaptive smooth second-order time-varying nonsingular fast terminal sliding mode control method is proposed in this paper for attitude and airspeed control of fixed-wing UAVs with model uncertainties and external disturbances. This control method does not require information about the bounds of disturbances and can avoid overestimation of the control gains. A radial basis function neural network observer is designed to mitigate the influence caused by sudden disturbances. The convergence of the attitude and airspeed controllers is proven by using the Lyapunov stability theory. Simulation results demonstrate the effectiveness of the proposed method for controlling a six-degrees-of-freedom fixed-wing UAV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call