Abstract
We propose a variant of the classical augmented Lagrangian method for constrained optimization problems in Banach spaces. Our theoretical framework does not require any convexity or second-order assumptions and allows the treatment of inequality constraints with infinite-dimensional image space. Moreover, we discuss the convergence properties of our algorithm with regard to feasibility, global optimality, and KKT conditions. Some numerical results are given to illustrate the practical viability of the method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.