Abstract

We present a primal-dual augmented Lagrangian method for solving an equality constrained minimization problem, which is able to rapidly detect infeasibility. The method is based on a modification of the algorithm proposed in Armand and Omheni (Optim Methods Softw 32(1):1–21, 2017). A new parameter is introduced to scale the objective function and, in case of infeasibility, to force the convergence of the iterates to an infeasible stationary point. It is shown, under mild assumptions, that whenever the algorithm converges to an infeasible stationary point, the rate of convergence is quadratic. This is a new convergence result for the class of augmented Lagrangian methods. The global convergence of the algorithm is also analyzed. It is also proved that, when the algorithm converges to a stationary point, the properties of the original algorithm are preserved. The numerical experiments show that our new approach is as good as the original one when the algorithm converges to a local minimum, but much more efficient in case of infeasibility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.