Abstract

Successful gradient-based sequential approximate optimization (SAO) algorithms in simulation-based optimization typically use convex separable approximations. Convex approximations may however not be very efficient if the true objective function and/or the constraints are concave. Using diagonal quadratic approximations, we show that non-convex approximations may indeed require significantly fewer iterations than their convex counterparts. The nonconvex subproblems are solved using an augmented Lagrangian (AL) strategy, rather than the Falk-dual, which is the norm in SAO based on convex subproblems. The results suggest that transformation of large-scale optimization problems with only a few constraints to a dual form via convexification need sometimes not be required, since this may equally well be done using an AL formulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.